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Abstract

In statistical models involving constrained or missing data, likelihoods containing integrals

emerge. In the case of both constrained and missing data, the result is a ratio of integrals, which

for multivariate data may defy exac or approximate analytic expression. Seeking mazimam like-

lihood estimates in such settings, we propose Monte Cario approximants for these integrals, and

subsequently maximize the resulting approximate likelihood. Iteration of this strategy expedites

the maximization, while the Gibbs sampler is useful for the required Monte Carlo generation. As

a result, we handle a class of models broader than the customary EM setting without using an

EM-type algorithm. implementation of the methodology is illustrated in two numerical examples.

1 Introduction

In challenging parametric modeling settings the maximum likelihood estimator is generally

the estimator of choice. This follows from both foundational considerations (e.g. the Likelihood

Principle) as well as practical ones (e.g. good large sample behavior under mild conditions). Here we

propose a Monte Carlo approach for calculation of maximum likelihood estimators which handles

a range of previously inaccessible problems.

The context we have in mind results in a likelihood function which is unavailable explicitly.

Some likelihoods of this type have been analyzed using the EM algorithm (Dempster, Laird and
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Rubin, 1977). As we clarify later in this section, however, the class of models we envision yields a

likelihood which cannot be handled by the customary version of this algorithm.

Though we present our method in terms of general multivariate joint distributions, all of our

illustrations and data examples assume an underlying exponential family of models. This is because

the behavior of the likelihood surface and hence the properties of the MLE are perhaps best

understood in such families (see e.g. Barndorif-Nielsen, 1978: Brown, 1986; Jacobsen, 1988, and

references therein). We do not address theoretical concerns regarding e.g. existence, uniqueness,

consistency, or asymptotic normality. Rather, we offer a method for obtaining the maximum of

the likelihood when it is reasonably well behaved. Problems and remedies associated with poorly

behaved likelihoods are well discussed in the literature and apply to our approach as we/l. In

particular, the use of multiple starting points with a given maximization routine often helps avoid

convergence to local, rather than global, maxima.

Our models assume the observed data to be constrained in some way. We also ailow -or the

possibiityI of missing data with constraints upon the entire set of variabies, both observed and

unobserved. As a general version of this setting let x denote the k-dimensional obserVed data

vector and 0 the p-dimensional parameter vector. We suppose that the likelihood takes the fo=m

c1(x:O .
c2•6)

where

cjIx: 0) = elX, ;x, ,•'Ody, 2

: a parametric family of densities, and

c2(O) c(jx; O)dx
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That is, as a function of x, L(6; x) is a normalized density function. Here y is viewed as a t-

dimensional missing (or latent) data vector constrained by the observed x to the set C(x), with

the observed x itself constrained to a set S.

In the case where there is no missing data we take ci(x; 0) to be a parametric family of densities

for x with c2(0) being the normalizing constant arising from the restriction of x to S. Computation

of the function c2(0) then requires a k-dimensional integration which we presume cannot be carried

out explicitly. In fact with k large and S awkward, evaluation of c2(0) at a particular 0o may

defy exact or approximate analytic numerical integration. Hence, we are drawn to Monte Carlo

approaches. In the case of latent or missing data y, computation of the function cj(x; 0) requires

a t-dimensional integration over a constrained set C(x), which again we cannot carry out e-xtlictly.

Moreover, c2(0) now requires a (k + t)-dimensional integr;.tion.

Of course, in principle one could attempt a grid search for the maximizing 0 in (1). That is, at

a given 0, perform Monte Carlo integrations for cl and c2 to obtain L, and then search through the

space of 0 for a maximum L. This is in fact the approach that emerges in several papers from the

econometrics literature on simulated moments estimation; see for example McFadden (1989) and

Pakes and Pollard (1989). The primary concern of these papers appears to be the accuracy and

precision of the simulator carrying out the integrations, rather than efficient maximization using

such a simulator. These papers typically assume the observed data x to be a deterministic function

of the latent data y, thus simplifying the structure of the integrals in (1). Constrained multivariate

normal models for y are presumed, resulting in tailored simulators inappropriate for the broader

class of statistical models we envision (see Section 2). Moreover, when p is large a naive grid search

for the MLE 0 may be impractical; for smaller p our proposed method is faster.

The EM algorithm is a widely used tool for handling incomplete data problems. It cannot,

however, accommodate constraints on the observed data. That is, it presumes that that cl(x; 8)
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is itself a normalized density in x, so that c2(8) in (1) disappears. To clarify, recall the general

version of the EM algorithm as presented in Dempster, Laird and Rubin (1977). At the Ith stage,

given 0 = 0(0) the E-step computes a function Q(0'10 = (0)) which the M-step then maximizes

over 6'. In the case of (1),

Q(0'I0) - fc() f(x, yfO)log f(x, yj6')dy _ 109C 2 (0')ci(x; 6)-lo (O.

But since this expression still involves cl and c2, it is no easier to work with than (1). In siummary,

if the likelihood is of the form (1) we need to approximate one or both of ci(x; 0) and c2(O) as

functions of 0. While Monte Carlo integration seems to be a natural tool in this regard, it is not

immediately clear how to proceed.

We develop Monte Carlo approximants following importance sampling ideas proposed in Geyer

and Thompson (1992). In their setting (an autologistic model), data vectors Xl,..., X,' come

from an exponential family model where only the nonnormalized form of the ex-ponential ker-

nel, exp(6'T(x)), is specified. That is, the vector T is chosen such that the sufficient statistic,

E=, T(xi), is a suitable summary of the data. Hence the normalizing constant, a fu.nction of 0

and therefore needed for the ML estimation, is unknown and requires integration over X to compute.

Geyer and Thompson introduce a Monte Carlo approximant for this function, as well as an iterative

approach for carrying out the maximization. We generalize their ideas beyond approximation of

the normalizing function to a broad class of constrained or missing data problems.

The format for the remainder of the paper is as follows. In Section 2 we offer a collection of

motivating examples where likelihoods of the form (1) arise. In Section 3 we formalize :he Monte

Carlo approach. Finally, Section 4 presents two datasets for which models of the form (§! arn used

and the approach of Section 3 is carried out.
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2 Illustrative Examples

In order to demonstrate the range of application of our approach, in the following subsections

we present three situations where the form (1) arises. Two of these are analyzed more fully using

appropriate datasets in Section 4. Other illustrations include multivariate biased sampling settings,

and the analysis of adaptive patient followup schemes for clinical trials data.

2.1 Patterned covariance models

An elementary illustration is provided by a constrained vector x from a multivariate normal
having mean 0 and covariance (O(), assumed to be a patterned matrix. Such structure arises in

variance components models, time series models, and moving average processes. Particular forms

include (a) Z,•(0) = a2, E,,i(O) = po.2, (b) Zy(8) = o'2p(i-jj, (C) rCi(0) = o'2bli-i, and (d)

Ej(0) = (m _ - jj) 2, ji - jj :- M; Zj(0) = 0, ji - ji > m . See also Rubin and Szatrowski

(1982) in this regard. Constraints on x might be xij c< , i = 1,...,k, or zx < x2 < ... < xv.

In the equicorrellated case (i) under say the latter constraints, ci(x; 0) is precisely the multivariate

normal density Nk(0, Z(8)) with

C2(0) = f<- . Nk (x 10, E (0)) dx 1d= 2 ... d= A:

Unless k is very small, calculation of c2 at a given 00 is only feasible using Monte Carlo methods.

2.2 Categorical data models

Consider the case of truncated multinomial trials. For instance, it is sometimes the case that

the observation of a zero count is truncated. We dichotomize according to presence or absence

and then, if present, record how many. If we assume cell counts arise from independent Poisson
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distributions in this fashion, the conditional distribution of cell counts given the total number

becomes a truncated multinomial. More generally for a fixed number of trials, n, suppose the ith

cell is restricted to have at least ri observations, i = 1,..., k. Let x = (i, ... , xA) where xi denotes

the count in the it' cell, with zx > ri for each i, and qi is the probability associated with the ijh

cell. Then, with 0 (ql,.. qk), c1(x;0) n! .'l= 1 qi /:! and c2(0) = •sci(x; 0) where now

S = {x: each zi is integer-valued, x i ri, and "k = n}. Other variations include the case

where a particular multinomial cell is known to supply the largest count or where the counts are

constrained to increase up to a particular cell and then decrease thereafter.

2.3 Compositional data models

Frequently samples are taken such that each obse.rvation is a vector whose components sum to

1. Examples include land samples described in terms of proportions of different types of vegetation,

soil samples described by proportion of chemical content, and rock samples described by proportion

of mineral content. Such data is referred to as compositional data (Aitchison, 1986). Distributional

models are specified on the simpleX {p = (Pl,p2,...,Pk) :pi > 0,Ek1 pi P .

Let f p!O) denote a parametric specification of the joint density for p. The most obvious choice

of f, the Dirichlet family, is usually undesirable since it forces an assumption of negative correlation

amongst ever-y (pi,pj) pair, as well as certain conditional independencies. Instead, baseline logit

transformations z = log(pi/pk) are often adopted, with z = (ZI, ., zi) assumed to follow, say, a

Nk_..I(/, E) distribution, so that 0 = (i. Z). The (k - 1.) logits uniquely determine the composition.

The mean /z is often expressed as a parametric function of explanatory variabls. Of par icular

interest is the covariance matrix Z, since the nature of covariation between proport.ons is a primary

research question. Usually MLE's are sought, so that given samples pe, t = I, .. ,n, we would

convert to zt and then obtain the customary MLE for u and Z.
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Now suppose there are constraints on the p's. For instance, we might know that the first

classification is most common, i.e. Pi > pi, i = 2,..., k, or we might know that the classifications

are in decreasing order of prevalence, i.e. Pi _ p_2 ... ""> py. On the logit scale these convert to

z1 _> zi, i = 2,...,k, and z >2! z2 2! ...- .zk- 1 > 0, respectively. If S denotes these constraints

and f(zl,...,z zh-.1) denotes the density of z then c2(0) = f$ f(z 1 ,...,zA,-iG) dz ... dzkl.

Next imagine that, as often happens, the kV classification is a leftover, or "other" category.

Unfortunately what classifcations comprise "other" may vary across data collection sources. That

is, we can think of p as the most refined classification vector, but we actually observe q's where

components of p are collapsed. Then the likelihood for the observed data qj,... , q,, takes the form

L(O; qj,..., q.)= I q t) f(ptj,--- ,Ptlj) dp,l" ...dptA , (3)
t=1

where C(qt) reflects the collapsing of Pt to give qt. Whether on the p scale or the z scale, expression

(3) is of the form (2). If we also incorporate the previouly described restrictions on p, the likelihood

takes the most general form (1).

3 The Monte Carlo approximant approach

Returning to (1), observe that we may write

c1(x;O ) = c1(x; 00) •(1C A(XY10) f( O)dy) (JCx f(ylx, Oo)dy - (4)(x) f (x, y 100)fyx()

and similarly

C2(0) = C2(00)- (is ) f(XY10)f(x,yIOQ)dydx) (is /C(X) f (xy•o)dydx) (5)
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Thus if {w;, j = 1, ... , B,} are drawn from g(yIx, Oo), the conditional distribution of y given x

and Oo restricted to C(x), then a Monte Carlo approximant for (4) is

, i(x; 9) = ci(x; Oo). B (xwIeo)" (6)

If instead {x*, j = 1, ., .B2} are drawn from g(xIOo), the distribution of x given 0o restricted to

S, and subsequently for each x* a y! is drawn from g(ylxj, Oo), then a Monte Carlo approximant

for (5) is given by

B2I,• f(x;,yjO)()
22(0) = c2(00) B23>j= f(x;y;)7 (7)

Hence we may approximate the log likelihood log L(O; x) by log at,(x; 0) - log •2(0). This in turn

implies that an approximate MLE b may be found by maximizing

log f(xwO) _ 2 f(x;,y;O)(
E f(xw* Go) - (8f(X)y.1 90 )

where we have ignored terms free of 0. Thus using the approximants (6) and (7), we have replaced

an intractable form (1) with an explicit form (8). Note that the terms free of 0 involve the unknown

quantities ci(x; 0o) and c2(Oo), but fortunately these need not be evaluated. Henceforth, we shall

refer to the method of finding b via maximization of (8) as the MCMLE algorithm. Notice that if

there is no missing data y, a Monte Carlo approximant is not needed for c1(x; 0) in (1), and (8)

simplifies to

logf(xi0) - log f -(x )" (9)

A byproduct of the explicit Monte Carlo approximant is the possibility of approximation to

the asymptotic covariance matrix of the MLE. If we calculate (either analytically or numerically)

the Hessian matrix of mixed partial derivatives of (8) with respect to 0 evaluated at the MLE, say
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H(b), then [-H(b)]-' provides a rough indication of the uncertainty associated with 6.

Implementation of expression (8) poses two challenges: carrying out the required sampling to

create the Monte Carlo approximants, and maximizing the resulting expression. With regard to

the first challenge, the sampling for (6) and (7) requires making draws from a joint distribution

whose form is known perhaps only up to normalizing constant and which is confined to a specified

set. If the joint density for x and y is of the form f(x, yf8), then in (6), given x and 00 we need to

sample from f(yjx, Oo) c f(x,-yljo) restricted to C(x). In (7) we need to sample from f(x, yleo)

restricted to the set {(x,y): x E S and y E C(x)}.

In some cases, simple rejection sampling (e.g. generating y from f(yjx, 6o) and retaining it if it

belongs to C(x)), though inefficient, will be easiest. Alternatively, Markov chain Monte Carlo using

the Gibbs sampler (see e.g. Gelfand and Smith, 1990; Tierney, 1991) is attractive here since required

sampling is from complete conditional distributions, all of which are proportional to the joint density

f(x, yJ0). Let us adopt the notation y-i = (yi,. - - -1, i+,,..., yt), with a similar definition for

x_.. Then in (6) we need to draw from f (ily-jx, 0), i = ,... ,t, appropriately restricted. In

(7) we need also to draw from f(x y = 1,.. .,, again appropriately restricted. At a

particular yi or xi the constraint sets must be viewed in univariate cross sections given the other

variates. This typically results in restriction to an interval or a set of intervals. Recent work of

Gelfand, Smith, and Lee (1992) is pertinent here in discussing one-for-one sampling from such

univariate distributions. Though their work is in the Bayesian framework where integration and

sampling is over the parameter space, it is equally well applicable for our situation where integration

and sampling is over the data space.

In the approximations (6) and (7), f(., .I0o) plays the role of an importance sampling density.

More generally, for instance, the w;'s in equation (6) might be drawn from any importance sampling

density h(ylx) that is appropriately restricted to C(x). But no such single density could possibly
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perform well for all integrands over the range of possible values for 6 On the other hand, adopting

an h that changed with 6 would require a simuiation for each 0, rendering any naive MLE grid

search algorithm infeasible.

How do we avoid this problem? Our selection of g(ylx, o) for h(ylx) suggests an iterative

approach to create a sequence of importance sampling densities that improves relative to the density

f at the MLE b. This approach eliminates the need for grid search and also the costly set-up

time in developing appropriate importance sampling densities. The idea follows from Geyer and

Thompson (1992), who observed that starting at some 0(0) if we maximize (8) to obtain b we can

take 0(1) - 8 and rerun the entire procedure, resulting in a new 8 and an iterative version of

the procedure. To understand the value of iteration we need to distinguish the ma.imization of

(8) from the maximization of (1). Expression (8) is an approximation to (1) which depends upon

the accuracy of the approximations (6) and (7). If we view f(x, yJ0o) as an importance sampling

density for f(x, yIb), then for a given B, and B, the Monte Carlo integration for cl(x; &) and c2(b)

improves as f(x, yl0o) gets "closer" to f(x,yj0), i.e. as 0o gets closer to b. Thus the sequence

{6 ()} produced by iteration should be getting closer to the true b which maximizes (1). Since our

objective is only to insure a good Monte Carlo approximant, we need not, however, take more than

a few iterations to obtain 0(0) in the vicinity of the true 0. At this point, one final iteration with

B, and B2 very large (say 10,000) will produce an accurate final estimate. Thus through a small

number of iterations we achieve an efcient and broadly applicable maximization strategy.

4 Numerical Examples

4.1 Truncated Correlated Normal

Consider the equicorrelated k-variate normal distribution described in Subsec:icn -.1 where

Eii = 1, Eq = p for i - j, subject to truncation to the set S = {x : maxIziI < L} for some
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L > 0. We seek the MLE of 0 - p. Notice that direct standardization of this likelihood involves a

k-dimensional integral for each candidate p value, whereas our Monte Carlo approach requires only

the generation of x;'s from the-truncated correlated normal, given the current approximation po.

To carry out the required sampling, we note that E71 = aA and E71 = bk for i # j, where

a: = [-(k- 2)p - 1]/[(k - 1)p2 - (k - 2)p - 1] and bt = pl[(k- 1)p2 -(k - 2)p - 1] (see e.g. Rao,

1973). Hence for any i,

-1 --- p(k - 1(L,L)()(10)

where •,-L = 1 - (1 - p)a-. 1. Generation of the necessary samples may now proceed by a Gibbs

sampling algorithm. That is, we successively sample from the complete conditional distributions in

(10), updating the value of a'• - s we go. After a suitably large number of "burn-in" iterations

N, the x; values emerging from the sampler are approximately distributed according to their true

joint distribution.

With regard to implementation, we first choose a starting value for E101 -,* then run the

substitution sampling chain for N "burn-in" iterations to essentially reach the chain's ergodic

distribution, and finally continue for an additional B2 iterations, now retaining the x, values

generated for use in a Monte Carlo approximant. Values obtained in this way will of course be

serially correlated, and some authors thus recommend retaining only every Mth sample. Even for

M = 1, however, the x9's will still be from the correct ergodic distribution; taking B2 large will also

help to ameliorate this problem. Proper selection of N (ascertaining "convergence" of the sampler)

is another important issue, and a source of much recent research interest (see for example Gelman

and Rubin, 1992; Raftery and Lewis, 1992). In this case, our experience with normal sampling

models convinced us that taking N = 20 would constitute ample burn-in.
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Using our Gibbs-sampled k's, the Monte Carlo approximant to the log likelihood (9) for this

model becomes

~logJE-1 1 - 1XiEI1X - logF"ý2 [; /:2 2:~f

o - logy- 1'# - E-e)xi(]

S[bk [ (Z= :i) + (ak - bk)x;

" exp [(bi°) - bk )' .T(E ji ) + (40) - ) + bk)X }logj= -P2 {2 k %3° I= - k

where ak and bk are defined as above, and P) and b(o) are defined similarly but depend on the

fixed value po instead of the unknown p. Note that our calculations feature two levels of iteration

(Gibbs sampling within our MCMLE iterative framework).

We apply the above method to the following vector of k = 10 observations: x' = (-0.167, -0.934,

0.175,-0.349,-1.012,-0.378,-0.720,-1.208,-0.664,-1.435). This x was generated from the

truncated correlated normal having p = 0.5 and L = 2. We used an initial guess of po = p = 0.5, and

a univariate maximization routine with maximum search window ±-0.1 (recall -1/(k.- 1) < p < 1

in order for E to be nonsingular). Running the MCMLE algorithm for i = 6 iterations (and us-

ing B 2 = 10,000 replications at iteration 6) we obtained the MLE/5 = 0.743 and an associated

approximate standard deviation (computed numerically using second differences) of 0.126. In this

example, convergence is rapid even for poor initial choices of po.

4.2 Constrained 2 x 2 Table

One of the datasets presented by Andrews and Herzberg (1985) concerns species composition in

a continuous, roughly semicircular arc of woodlands near Bradford, England. The data, collected

by students at the University of E radford, record counts of various kinds of trees at several sites

within each of the woodlands. Table 1 gives the numbers of oak and sycamore trees in two such sites
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from different woodlands (one in Royd's Cliffe and one in Dixon's Wood). However, this selection

was not done completely arbitrarily: Royd's Cliffe sites having no oak trees were not eligible for

-selection.

Oaks Sycamores
Site 1 (Royd's Cliffe) 2 3
Site 2 (Dixon's Wood) 2 8

Table 1: Restricted multinomial data: Tree counts in two woodland sites

Assuming the observations in this table arise as independent Poisson variables, it is customary

to condition on the total count n. This results in a multinomial .A(n; 0) model with n = 15 and

0 = (q11, q12, q21,q22), but under the restriction that xC > 0. This is a special case of the class

of restricted categorical data models considered in Subsection 2.2. Direct standardization of the

likelihood via simple summation would be possible in this trivariate problem, but a very tedious

accounting problem indeed. We shall use the Monte Carlo approach to find maximum likelihood

estimates for the qij's and the odds ratio R = (qj1 q22)/(q12q21), and compare these results to those

obtained presuming an unrestricted model.

The unstandardized likelihood for this model is

c j ( x ; 80 ) o(X • =z u X r = " - " - "-1 2 1 I •21 1 {.I I. .-}-T) 1 { ...--T 2 11 o . .. n ( z

so that the Monte Carlo log likelihood (9) becomes

xn log qn + zX12 log q12 + z21 log q21 + (n - z - X12 - T1)logq22

q11 qtq q,, q.,.
'to 12 *" *-• '-' -w" J.LI0 q• 2,0 q2 1.0 q• 2h,00 'h1, .2

where the x; values have been generated from our truncated multinomial model conditional on the
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parameter values q11,o, q12,0, q21,o, and q22,0. Generating multinomial observations and rejecting

those having zx1 = 0 is a crude but effective way of drawing the x .

Convergence of the MCMLE algorithm was again rapid: only i = 3 iterations were required to

obtain the estimates 41 , 0.111,4 12 = 0.204, and 421 , 0.137, with associated standard deviations

of 0.096,0.108, and 0.091, respectively (again arising from a numerically computed Hessian). These

results again used B12 = 10,000 Monte Carlo replications at the final iteration. The fact that

41, < 42, is intuitively plausible, since these two cells produced the same observed counts but,

unlike z21 , :X1 could not have been 0. The unrestricted MLE's in this case are of course 2/15 =

0.133, 3/15 = 0.2, and 2/15 - 0.133, respectively. The discrepancy for the odds ratio R is more

pronounced: while the raw sample odds ratio is 2.7, its MLE under the restricted model is only

2.2 (estimated standard deviation 3.0). The MCMLE algorithm's ability to produce results in such

settings enables comparison of standard models with interesting but unwieldy truncated ones.
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Abstract

In statistical models involving constrained or missing data, likelihoods containing integra•s

emerge. In the case of both constrained and missing data, the result is a ratio of integrals, which

for multivariate data may iefy exact or appraimate anaivItic ezression. Seeking ma.drum like-

lihood estimates in such settings. we propose Monte Carlo appromdmants for these integrais, and

subsequently xnm nize the resulting approximate likelihood. Iteration of this strategy expedites

the ma•,mi-axion, while the Gibbs sampler is usefu for the required Monte Carlo generation. As

a result, we handle a class of models broader than the customa-- EM setting withou: wsing a=

EM-type algorithm. 1mplementation of the methodology is illustrated in two numerical exampies.


